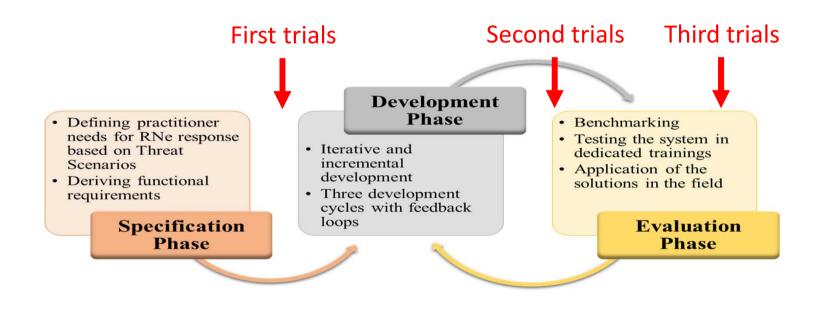


TERRIFFIC FROM AN END-USER PERSPECTIVE

BUILDING THE REQUIREMENTS & WORKING WITH PRACTITIONERS

Col. Denis GIORDAN, SDIS73 / Laurent Walle, TLA

11 December 2020 – Virtual Semi-Public Workshop


Dec. 11th, SDIS73/DG - TLA/LW

OBJECTIVES

LOCALIZE THE PLUME AND ANTICIPATE ITS MOVEMENT

- First step: To define as quick as possible a safe working area and initial first estimate of the perimeter
 - Detect if there is a source
 - Elaborate the restrictive area
 - Establish the control area to secure the perimeter
- Second step: Improve the first 30 minutes of the intervention by helping the first responders to:
 - Provide information about the location of the high spot and the exposure rate
 - Determine if the people should be decontaminated or not
 - Decide on which equipment is needed on site
- The number of deployed sensors depends on the total allocated budget for the mission

R&I METHODOLOGY & ITERATION CYCLE

Dec. 11th, SDIS73/DG - TLA/LW

KEY PERFORMANCE INDICATORS

• Reduce:

- the exclusion and potentially the control zone
- the first information validation time for first responders intervention
- Reduce risk for first responders exposure time
- the training time by simplifying the system
- Help decision makers at two levels (tactical decisions and strategical decision levels)


Dec. 11th, SDIS73/DG - TLA/LW

CATALOGUE OF CBRN SCENARIOS

ANALYSIS OF THE OPERATIONAL PRACTICES OF END USERS

- 1. Dirty bomb in a bin
- 2. Dirty bomb in a bus
- 3. Dirty bomb in a subway
- 4. Dirty bomb in a large meeting (semi-enclosed)
- 5. Loss of integrity on a radioactive railroad waste
- 6. Loss of a gammagraphic probe
- 7. Destruction of a soil hygrometer with dispersion of radioactive agent
- 8. Attack with chemical and radioactive agent in a commercial mall
- 9. Discrete contamination of a crowd in movement
- **10**. Radioactive agent dispersion by a drone during a concert
- **11**. Radioactive agent dispersion during a political demonstration using "radioactive Ping-Pong balls"
- 12. Terrorist attack against a container including radioactive material on a truck
- 6 **13**. Massive irradiation of the passengers of a train or bus by a diverted gamma radiography source

Dec. 11th, SDIS73/DG - TLA/LW

Dec. 11th, SDIS73/DG - TLA/LW

DETECTION CRITERIA

- Able to detect the type of radiations and chemicals
- Adapted detection threshold, low level sensitivity
- Adapted range of measurement and detection

Dec. 11th, SDIS73/DG - TLA/LW

USING CRITERIA

- Compact size / adapted shape
- Weight
- Ranges:
 - Maximum and minimum temperature
 - Humidity
- Impact resistance
- Reliability
- Battery or storage battery (rechargeable)
- Ability to change the batteries on field
- Relevance of the situation identification

9

ERGONOMICS CRITERIA

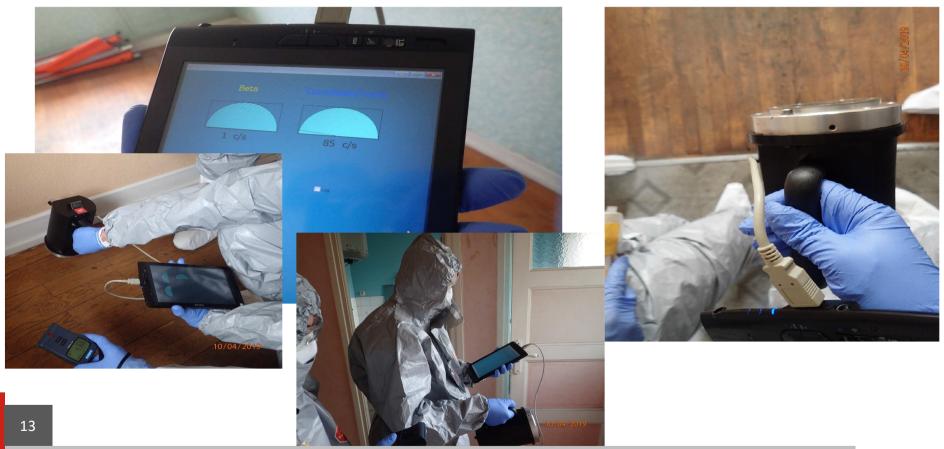
- Reaction speed / fast trend visibility
- Language
- Readability of the screens
- Ease of use
- Commands tree
- Integrated tool or coordinated scale that can handle all tasks / compatibility with other equipment in use
- Pre-alarms and alarms
- Ease of maintenance
- Price
- 10 Maintenance cost

Dec. 11th, SDIS73/DG - TLA/LW

Dec. 11th, SDIS73/DG - TLA/LW

INTRODUCTION TO DETECTION CONDITIONS

Putting researchers and private companies agents in radiological situation



- Used sources :
 - Contamination:
 - 400 MBq, Tc99m
 - 111 MBq, Tl201
 - Sealed sources: 400 MBq, Cs 137
- Various parameters:
 - Detection efficiency compared with other probes/detectors
 - Detection =f(distance)
 - Ease of use under PPE

Dec. 11th, SDIS73/DG - TLA/LW

12

THE $B\ \Gamma$ probe prototype and protection of tester

Dec. 11th, SDIS73/DG - TLA/LW


EVALUATION WITH CONTAMINATION

AND COMPARISON OF DETECTION LEVELS

Dec. 11th, SDIS73/DG - TLA/LW

MEASUREMENTS

	9m	8m	7m	6m	5m	4m	3m	2m	1m	
В 20	0,5	3,57	3,82	3,91	5,75	8,97	13,3	23	43,6	
HDS 101	140	1000	1100	1500	2000	3000	4500	7700	15500	
Radiagem + X probe	21	123	147	185	236	342	515	903	1800	
ris perpendicular=side	220	1300	1530	1930	2500	3500	5350	9100	17700	
ris face to source	220	1200	1340	1715	2240	3100	4700	8320	16000	
Beta-Gamma probe Mode b	1	1	1	1	1	1	1	1	1	
Beta-Gamma mode g face	20	140	180	240	300	400	670	1200	2400	
Beta-Gamma mode g side	20	100	120	140	200	250	420	700	1500	Count rate variation depending on dis
DG 5	140	940	1142	1480	1865	2650	3754	6175	10000	
					300 200 100					
					0) B 20 iris perpen	8m diculaire		6m 5m 4m 3m 21 HDS 101 Radiagem - Iris face source Cafetière M
15						—	Cafetière r	node gamn	ne face	Cafetière mode gamme sur le côté — DG 5
Dec. 11th, SDIS73/DG - TL		V							TER	

CONTACT REACH US

Project Coordinator: Ulisse Gendotti – <u>gendotti@arktis-detectors.com</u>

Dissemination & Communications: Rob Munro – <u>terriffic-arttic@eurtd.com</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n°786729. The information and views set out in this presentation are those of the author(s) and do not necessarily reflect the official opinion of the European Union